If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x^2+24x+20)/(x+4)=0
Domain of the equation: (x+4)!=0We multiply all the terms by the denominator
We move all terms containing x to the left, all other terms to the right
x!=-4
x∈R
(5x^2+24x+20)=0
We get rid of parentheses
5x^2+24x+20=0
a = 5; b = 24; c = +20;
Δ = b2-4ac
Δ = 242-4·5·20
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{11}}{2*5}=\frac{-24-4\sqrt{11}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{11}}{2*5}=\frac{-24+4\sqrt{11}}{10} $
| -7=2-8x | | 12x^2-2x-5=0 | | (x+1)³+8=504 | | 2.33x=5.8 | | 13x-46=7x+38 | | x.x.x+9=504 | | 3x+9=504 | | 3x-9=504 | | 28n+56=7(4n+8) | | (2m-5)=0 | | (17-2y)^2+y^2=289 | | (3m+4)=0 | | (x+1)^3+8=504 | | 3(x+9)=9x-3 | | 0.6x+0.5=1.167 | | p−|5|×|−3|=−2 | | 3x+7=34x= | | 6y-9+2y-5=8y+17-14y | | 4x-5x+10=3 | | .005x=1 | | 5x-15+8=3+2x-8 | | 2(x=5)=2x+5 | | 3-4^x=-62 | | 4x4=20 | | y/8=5/13 | | x-2/3-x=-5/4 | | -2.5y=−4 | | −2.5y=−4 | | 28x+6=22 | | 1/4=x+7/4 | | 2x-1=139 | | 38+4x=50 |